Systematic regularization of linear inverse solutions of the EEG source localization problem.

نویسندگان

  • Christophe Phillips
  • Michael D Rugg
  • Karl J Fristont
چکیده

Distributed linear solutions of the EEG source localization problem are used routinely. Here we describe an approach based on the weighted minimum norm method that imposes constraints using anatomical and physiological information derived from other imaging modalities to regularize the solution. In this approach the hyperparameters controlling the degree of regularization are estimated using restricted maximum likelihood (ReML). EEG data are always contaminated by noise, e.g., exogenous noise and background brain activity. The conditional expectation of the source distribution, given the data, is attained by carefully balancing the minimization of the residuals induced by noise and the improbability of the estimates as determined by their priors. This balance is specified by hyperparameters that control the relative importance of fitting and conforming to prior constraints. Here we introduce a systematic approach to this regularization problem, in the context of a linear observation model we have described previously. In this model, basis functions are extracted to reduce the solution space a priori in the spatial and temporal domains. The basis sets are motivated by knowledge of the evoked EEG response and information theory. In this paper we focus on an iterative "expectation-maximization" procedure to jointly estimate the conditional expectation of the source distribution and the ReML hyperparameters on which this solution rests. We used simulated data mixed with real EEG noise to explore the behavior of the approach with various source locations, priors, and noise levels. The results enabled us to conclude: (i) Solutions in the space of informed basis functions have a high face and construct validity, in relation to conventional analyses. (ii) The hyperparameters controlling the degree of regularization vary largely with source geometry and noise. The second conclusion speaks to the usefulness of using adaptative ReML hyperparameter estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems

In this paper‎, two inverse problems of determining an unknown source term in a parabolic‎ equation are considered‎. ‎First‎, ‎the unknown source term is ‎estimated in the form of a combination of Chebyshev functions‎. ‎Then‎, ‎a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem‎. ‎For solving the problem‎, ‎the operational matrices of int...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

F Ur Mathematik in Den Naturwissenschaften Leipzig Stable Focal Inverse Source Localization Using Combinatorial Optimization Techniques Combined with Regularization Methods Stable Focal Inverse Source Localization Using Combinatorial Optimization Techniques Combined with Regularization Methods Running Title: Stable Focal Inverse Source Localization

The inverse problem arising from EEG and MEG is largely underdetermined. One strategy to alleviate this problem is the restriction to a limited number of point-like sources, the focal source model. Although the singular value decomposition of the spatio-temporal data gives an estimate of the minimal number of dipoles contributing to the measurement, the exact number is unknown in advance and no...

متن کامل

A numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization

In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...

متن کامل

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 2002